

System based Machine Learning for

Analyzing EEG Waves

By: Lior Solomon

Supervisor: Raid Saabni

Project submitted in partial fulfillment of the requirement for an MSc

degree in Computer Science

The Academic College of Tel-Aviv Yaffo

School of Computer Science

December 2016

1

Contents

I. Abstract ... 3

II. Introduction ... 3

III. Comprehensive Literature Review .. 5

1. Electroencephalogram, EEG .. 5

2. Brain waves .. 6

3. Neurons .. 7

4. Artificial Neural Network .. 9

5. Perceptron ... 10

6. Sigmoid Neuron ... 11

7. Activation function .. 11

8. Linear function .. 12

9. Step Function ... 12

10. Sigmoid Function .. 13

11. Tanh function .. 13

12. Rectified Linear Unit, ReLU .. 14

13. Cost function .. 14

14. Gradient, Gradient descent, Stochastic gradient descent .. 15

15. Learning rate ... 16

16. MSE - Mean squared error .. 16

17. Epoch .. 17

18. MNIST data [28] ... 17

19. Feedforward .. 18

20. Recurrent neural network .. 18

21. Backpropagation ... 19

22. Vanishing Gradient Problem ... 20

23. Regularization and Overfitting [12] .. 21

24. Deep Neural Networks .. 22

a. Applications ... 23

25. Convolutional Neural Networks .. 23

a. Convolutional Neural Networks Architecture .. 24

26. BCI – Brain Computer Interface ... 27

27. Techniques to improve accuracy & performance .. 29

28. Tools ... 31

2

a. openBCI – Open source Brain Computer Interface [2] .. 31

b. Emotiv EPOC / EPOC+ [1] .. 32

IV. The Problem and its Sources ... 35

1. Channels reduction ... 35

2. Improve classification accuracy ... 35

V. The System .. 36

1. System description .. 36

2. EEG Datasets ... 38

a. An efficient P300-based brain-computer interface for disabled subjects [26] 38

b. BCI Competition 2008 – Graz data set A [18] .. 38

c. Data sets retrieval Process .. 40

VI. Our Approach ... 41

1. The Process .. 41

2. Improvements and analysis .. 43

a. Initiate the system - weight initialization .. 44

b. Data Augmentation ... 45

3. Types .. 50

a. Subject dependent vs Subject independent... 50

b. Channel group size / channel reduction .. 50

4. Simulations .. 51

a. Result summery ... 56

b. Group of channels ... 57

c. Run with channel reduction ... 58

VII. Work Contribution ... 59

1. Improve results .. 59

2. Reduce channels .. 59

VIII.Summery ... 60

IX. Appendix - A .. 61-65

X. Bibliography .. 66

3

I. Abstract

Electroencephalography (EEG) is a noninvasive measurement for modeling

brain activity as waves within the exterior layers of the brain. Many subfields

of Psychology and brain analysis uses these models to analyses emotions,

diseases or even as an alternative way of communication, such as the case of

Brain Computer Interface (BCI). In this research, we use machine learning

techniques in general and deep learning with Artificial Neural Network in

specific to analyze the EEG brain activity in order to enable BCI and emotion

diagnosis. Due to the easy access to cheap kits of nearly professional tools

for recording the electrical activity of the brain like Emotiv or OpenBCI

toolkits, it is easier to research and develop tools for BCI and diagnosis based

on these affordable kits.

In this research, we use a well-defined EEG dataset to train and test out

models. A preprocessing phase is used to extend, organize and manipulate

the structure of available data sets to our needs for better training and testing

results. We use several techniques to improve system accuracy. Data

augmentation, system tuning and different system initializations strategies

were used for that purpose. We also make different scenarios of simulations

in order to get the best results, such as using smaller groups of EEG channels

to get same results as larger groups.

Classification of EEG patterns may enable to diagnose the human brain

action and reaction in certain cases like move limbs, driving, sleeping,

listening to music, study, trying to concentrate or even when the human body

or brain is sick or having mental disease.

II. Introduction

The study of the human brain is very diverse and have intersections with many fields

of science including computer science. One aspect of such in tersection is the machine

learning approach involving Artificial Neuron Network (ANN) to analyze and learn

from EEG channels about human activities, which is the main subject of the proposed

research.

In 1875, Richard Caton presented first findings about e lectrical activity of animal

subjects, rabbits and monkeys. Following the findings, Hans Berger discovered the

alpha wave activity in the human brain. Alpha waves presents resting state for the

brain, its dominant just before and after a sleep. In 1924, Hans Berger record the first

human EEG.

4

Electroencephalography (EEG) is a monitoring method which can help to record the

electrical activity of the brain. This electrical activity can lead us to better understand

the human brain and how it functioning. Earlier observation were shown that the EEG

spectrum contains common characteristic that fall within 5 known brain waves types:

gamma (> 27 Hz), beta (12 Hz – 27Hz), alpha (8Hz – 12 Hz), theta (3Hz – 8 Hz) and

delta (0.2 Hz – 3 Hz). The range of the Hz in each type can be a little different from

one research to another.

In order to sample electrical brain activity – EEG, electrodes consisting of small

metal discs with wires, are pasted onto the scalp. The electrodes detect electrical

charges that result from the activity of the brain cells (neurons). This electrical

activity are amplified and translated as a graph on the computer display. Exists a

variety of brainwave reading headset in the market.

With this ability, systems based Brain Computer Interface (BCI) enable to send

commands to an electronic device only with brain activity which can affect people

with motor disabilities. BCI relies on a classification algorithm in order to identify

the brain activity pattern.

There are a wide spectrum of classification techniques used in machine learning with

ANN being one of them. Recently sophisticated variants of ANN with deep

architecture and unique learning algorithms are giving the state of art results in many

learning tasks. There are two main types of ANN based on machine learning,

supervised where output values are known beforehand , using variants of back

propagation algorithm and unsupervised where output values are not known in

advanced, historically used for clustering, and recently are one of the reasons of the

real breakthrough of the last years advance in the ANN field.

Generating data sets for training and testing in such filed is tedious and take much

time and effort. Therefore, in this research, we use standard benchmarks with the 5

known brain waves types: gamma, beta, alpha, theta, and delta; we plan to analyze a

well-defined EEG dataset. In order to be able to work with the dataset on our ANN

system. For the proposed data set , we have changed its structure and change it

accordingly for our needs keeping the main purpose and data. We used several

techniques to improve the accuracy, such as augmentation methods, system tuning,

deeper network and use given values to initiate the system, details in section VI.

There are different ways to augment the dataset, such as elastic deformation, white

Gaussian noise, smoothing and more ways to achieve that, we will explore some.

In this research we will answer the question of the possibility classification of a motor

imagery task of a subject based on learning patterns of recorded EEG signals, and

what compact set of channels would be most effective.

5

III. Comprehensive Literature Review

1. Electroencephalogram, EEG

EEG measures electric brain activity and can evaluate electrical activity in the brain.

Electrical currents created during synaptic excitations of the dendrites in the neurons.

In order to record EEG, the systems use electrodes, amplifiers, analog to digital

converter and a recording device. There are several ways to record the activity and

this one is very popular due to the easily to do so. The activity can be detect using

flat metal discs (electrodes) attached to the scalp. It does not provide the best quality

signals because it need to go through several layers and can be affected by background

noise. The waves that came out from the EEG signals is measured over time.

Hans Berger invent the EEG and was the first to record the human

Electroencephalogram in 1924.

Usage of EEG is broad, detection problems in the electrical activity of the brain, these

problems can be associated with brain disorders – sleep disorders, stroke, brain

tumor, head injury, other brain diseases, determine the level of the brain activity

when someone is in a coma, etc.; EEG can be used in Brain Computer Interface (BCI),

control devices through the brain;

1Demonstrates a mapping of 64 electrodes that

give 64 channels that can record EEG.

There are sort amount of channels that can be

used, it can be 14, 16, 64 or other number of

channels. Different numbers of channels can

give different results. It can connect to the

human head with a cap or separate electrodes.

EEG comprises a set of signals – brain

waves, which may be classified according to their frequency. Well -known frequency

ranges have been defined. Some researchers define the ranges a little bit different

from others.

1 http://www.bbci.de/competition/ii/albany_desc/albany_desc_i.html

6

EEG has been used mainly to evaluate neurological disorders, since Hans Berger’s

original paper, in the clinic and to investigate brain function in the laboratory. Over

this time EEG thought to be used to decipher thoughts, or intent, so that a person

could communicate with others or control devices directly by means of brain activity.

EEG attract little serious scientific attention until recently. EEG reflects brain

activity, person’s intent could be detected in it; EEG based communication requires

the capacity to analyze the EEG in real -time, now the technology exist and it’s not

so expensive.

2. Brain waves

The brain is made up of billions of brain cells called neurons. Neurons use electricity

to communicate with each other. The electricity can be detected using sensitive

medical equipment for EEG. EEG signals are measured in microvolts (one millionth

volt). The brain waves can changed according on what the person is doing, feeling

and on which mental state is in. The brain waves types’ frequency is diverse for each

type between Information Sources. There are 5 known brain waves types as follow .

Gamma 27 Hz and up - High frequency brainwaves. Gamma brainwaves fades

during deep sleep. Too much Gamma brainwaves can be from stress and anxiety.

When the person is study, formation an idea the Gamma brainwaves appears.

Beta 12hz - 27hz - This is the normal awake state of consciousness during the day,

people found in mental state where they are awake and in thi s state.

It is seen usually when we are in focus, engaged in a problem solving and decision

making.

Alpha 8hz - 12hz - Alpha brainwaves presents resting state for the brain. Alpha

brainwaves dominant close to sleep, before and after. Too much alpha wave s can

cause daydreaming and lose focus.

Theta 3hz - 8hz - Most often occur in light slip or deep meditation and relaxing.

Theta represent a mind in low sense and deeply relaxed person. Too much can point

on depression, impulsivity and inattentiveness. A small amount of Theta waves is

detected in a normal awake adult.

Delta 0.2hz - 3hz - Delta waves generated in deepest meditation and dreamless sleep,

Deep sleep. In this state, the body is healing and "resetting" itself. In this state the

human is completely unconscious. Sleep and depressants increase delta waves. It will

be unusual and abnormal to detect Delta waves in adults when in an awake state.

7

3. Neurons

Neurons are cells that processes information through electrical and chemical signals .

Neurons specialized to carry "messages" through an electrochemical process.

Neurons come in many different shapes and sizes. The central nervous system is

composed from neurons. The average human brain has about 100

billion neurons (or nerve cells). Each neuron may be connected to up to 10,000 other

neurons, passing signals to each other via as many as 1,000 trillion synaptic

connections.

Information transmission within the brain, takes place during the processes of

memory, is achieved using a combination of electrochemical -

chemicals and electricity. A typical neuron possesses a soma dendrites and a

single axon.

Every neuron maintains a voltage gradient across its membrane, due to

metabolically-driven differences in ions of sodium, potassium, chloride and calcium

within the cell, each of which has a different charge. If the voltage changes

significantly, an electrochemical pulse called nerve impulse is generated. This

electrical activity can be measured and displayed as a wave form called brain

wave.

This pulse travels rapidly along the cell's axon, and is transferred across a specialized

connection known as a synapse to a neighbor neuron, which receives it through its

feathery dendrites. A synapse is a complex membrane junction or gap used to transmit

signals between cells, and this transfer is therefore known as a synaptic connection.

Although axon-dendrite synaptic connections are the norm, other variations are also

possible. A typical neuron fires 5 - 50 times every second.

Each individual neuron can form thousands of links with other neurons. Functionally

related neurons connect to each other to form neural networks also known as neural

nets or assemblies. The connections between neurons are not static, though, they

change over time. The more signals sent between two neurons, the stronger the

connection grows , with each new experience and each remembered event or fact, the

brain slightly re-wires its physical structure.

There are many specific types of neurons in the human brain, but there are three

general types: Bipolar, Unipolar, Multipolar

8

Unipolar:

Unipolar neurons only have one process

emerging from the cell. Humans do not have

true unipolar cells. These neurons are not

found in vertebrates, but are found in

insects where they stimulate muscles or

glands. But instead have pseudo-unipolar cells. They are called pseudounipolar

cells because although one process extends from the cell body, this single

process then divides into two, with one end extending from the sensory

receptors and the other end extending to the central nervous system.

Bipolar:

A bipolar neuron is a nerve

cell located in humans and is defined

by two processes that connect to

the cell body: one dendrite and one

axon.

A neuron that has two processes arising from opposite poles of the cell body.

Multipolar:

Multipolar neurons, are the most common

type of neuron. They are located in the central

nervous system. Have more than two

processes emanating from the neuron cell

body. These types of neurons are constructed

in such a way as to allow immense

connectivity and networking with other cells.

http://www.wisegeekhealth.com/what-is-a-nerve-cell.htm
http://www.wisegeekhealth.com/what-is-a-nerve-cell.htm
http://www.interactive-biology.com/dictionary/cell/

9

4. Artificial Neural Network

Artificial neural network (ANN) models, take their inspiration from the brain. Brain’s

neurons receives signals through synapses located on the dendrites or membrane of

the neuron. When the signals received are strong enough (surpass a certain threshold),

the neuron is activated and

emits a signal though the

axon. This signal might be

sent to another synapse, and

might activate other neurons.

ANN, is a classifier that simulating working principle of the human brain. ANN

basically consist of inputs (like synapses), which are multiplied by weights (strength

of the respective signals), and afterwards computed by a mathematical function which

determines the activation of the neuron. Another function (which may be the identity)

computes the output of the artificial neuron. The higher a weight of an artificial

neuron is, the stronger the input that is multiplied by it will be. Weights can be

negative; we can say that the signal is inhibited by the negative weight. Depending

on the weights, the computation of the neuron will be different. By adjusting the

weights of an artificial neuron we can obtain the output we want for specific inputs .

When we have an ANN of thousands of neurons, it would be complicated to find all

the weights. But we can find algorithms which can adjust the weights of the ANN in

order to obtain the desired output from the network. The process of adjusting the

weights is called learning or training. One of those algorithms is called

Backpropagation, backward propagation of errors.

Generally, a computer has one processor. Conversely, the brain is composed from a

large number of processing units (neurons), ~1011 operating in parallel. The neurons

are believed to be much simpler and slower than a processor in a computer . The brain

is believed to provide its computational power from the large connectivity. Neurons

in the brain have connections, called synapses, to ~104 other neurons, all operating

in parallel. In a computer, the processor is active and the memory is separate and

passive, it is believed that in the brain, both the processing and memory are

distributed together over the network. Processing is done by the neurons, and the

memory is in the synapses between the neurons. There are two important types of

artificial neuron: the perceptron and the sigmoid neuron.

Axon terminals

Impulses carried

Away from cell

body

10

5. Perceptron

A type of artificial neuron. Developed in the 1950s and 1960s by the scientist Frank

Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts.

Perceptron is the basic processing element. It has inputs which can be from the

environment or may be the outputs of other perceptrons.

Perceptron. xj, j = 1,...,d are the input units. x0 is the

bias unit that always has the value 1. y is the output

unit. wj is the weight of the directed connection from

input xj to the output.

It’s easy to see that, 𝑦 = ∑ 𝑤𝑗𝑥𝑗 + 𝑤0
𝑑
𝑗=1 . 𝑤0 – intercept value to make the model

more general.

Presents parallel perceptrons with hidden

layers. The left most layer is called the input

layer, and the neurons within the layer are

called input neurons. The right most

or output layer contains the output

neurons, or, as in this case, a single output

neuron. The middle layer is called a hidden

layer.

Let’s say, there are K > 2 outputs, there are K perceptrons, each of which has a weight

vector w i.

How to train a Perceptron?

The perceptron defines a hyperplane, and the neural network perceptron is ju st a way

of implementing the hyperplane. Given a data sample, the weight values can be

calculated offline, the perceptron can be used to calculate the output values. In

training neural networks, we generally use online learning where we are not given

the whole sample, but we are given instances one by one and would like the network

to update its parameters after each instance, adapting itself slowly in time.

Hidden layer

Output layer

Input layer

Hidden layer

http://books.google.ca/books/about/Principles_of_neurodynamics.html?id=7FhRAAAAMAAJ
http://en.wikipedia.org/wiki/Frank_Rosenblatt
http://en.wikipedia.org/wiki/Frank_Rosenblatt
http://scholar.google.ca/scholar?cluster=4035975255085082870
http://en.wikipedia.org/wiki/Warren_McCulloch
http://en.wikipedia.org/wiki/Walter_Pitts

11

6. Sigmoid Neuron

A type of artificial neuron. Sigmoid neurons are similar to perceptrons, but modif ied

so that small changes in their weights and bias cause only a small change in their

output.

Just like a perceptron, the sigmoid neuron has inputs, x1, x2, x3, … instead of being 0

or 1, inputs can take on any values between 0 and 1.

So, for instance, 0.752… is a valid input for a sigmoid neuron. Like a perceptron, the

sigmoid neuron has weights for each input, w1, w2, w3, … and an overall bias, b. The

output is not 0 or 1. Instead, it 's σ(w⋅x+b) where σ is called the sigmoid function:

σ(z) =
1

1 + 𝑒−𝑧

7. Activation function

The output of a neuron (𝑦) is a function of the weighted sum 𝑦 = 𝑓(𝑣)
Activation function or activation in short for a neural network is defined as the

mapping of the input to the output via nonlinear function (transform function), like

sigmoid or tanh function at each node in the net.

∑𝑤𝑖𝑥𝑖 + 𝑏

𝑖

Resemblance to the neuron:

Axon terminals

Impulses carried

Away from cell body

𝑓

Cell body

Activation

function

𝑓 ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑖

𝑤1𝑥1

𝑥0

Axon from a neuron

𝑤0
synapse

12

There are several well-known activation function that have different properties, like:

range, derivative, if it’s a monotonic or not and more.

When creating the neural network for the case problem, a “right” activation function

should be choose.

8. Linear function

𝑓(𝑣) = 𝑏 + 𝑣 = 𝑏 + ∑𝑤𝑖𝑥𝑖

The parameter “b” stands for the bias. A neuron

becomes a linear model with bias 𝑏 being the

intercept and the weights, 𝑤1, . . . , 𝑤𝑚 being the

slopes.

Usually, nonlinear activation function is been used in nontrivial pro blems via neural

networks.

9. Step Function

𝑓(𝑣) = 𝑏 + 𝑣 = 𝑏 + ∑𝑤𝑖𝑥𝑖

𝑓(𝑣) = 1 𝑖𝑓 𝑣 ≥ 𝑏

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑏 Called the threshold

The step function is very similar to the sigmoid function as describe below. As we

can see, the sigmoid function is actually a smoothed differential version of the step

function.

13

10. Sigmoid Function

Defined by: σ(z) =
1

1+ 𝑒−𝑧

Get real-valued number and “squashes” it into

range [0,1]. In general, large negative numbers

become 0 and large positive numbers become 1.

Interpretation to firing rate of a neuron: not

firing at all – 0, Fully-saturated firing at an

assumed maximum frequency – 1.

The question of using this function as part of the training process has major draw

backs such as Gradients drawback (See gradient section III.14). When the neuron's

activation saturates at 0 or 1, the gradient at these regions is almost zero . If the local

gradient is very small, it will effectively “kill” the gradient and almost no signal will

flow through the neuron to its weights and recursively to its data. If the initial weights

of sigmoid neurons are too large then most neurons would become saturated and the

network will barely learn.

If σ had been a step function then the sigmoid neuron would be a perceptron – the

output would be 0 or 1.

11. Tanh function

tanh (𝑥) non-linearity function can be used as activation

function. It gives the hyperbolic tangent of 𝑥.

tanh (𝑥) function give a real valued number to the range [-1,1]. Like the sigmoid

neuron, its activations saturate, but unlike the sigmoid neuron its output is zero -

centered. In practice the tanh (𝑥) non-linearity is always preferred to the sigmoid

nonlinearity.

14

12. Rectified Linear Unit, ReLU

𝑓(𝑥) = max (0, 𝑥) threshold at zero.

𝑥 – input to a neuron.

The ReLU can be implemented by thresholding a

matrix of activations at zero – not suffer from

saturating.

The ReLU function are less expensive from other

activation functions.

The ReLU units can cause a problem during training. Large gradient flowing through

a ReLU neuron could cause the weights to update in such a way that the neuron will

never activate on any datapoint again – this can cause the gradient flowing through

the unit will forever be zero from that point on. This can lead to a network with un-

useful neurons that never activate across the entire training dataset.

There are several variants of the RLU function: leaky ReLU, Noisy ReLU, parametric

ReLU, randomized ReLU and more.

13. Cost function

What we'd like is an algorithm which lets us find weights and biases so that the output

from the network approximates y(x) for all training inputs x. To quantify how well

we're achieving this goal we define a cost function

 An example of cost function.

𝑤 , denotes the collection of all weights in the network, 𝑏 all the biases, 𝑛 is the total

number of training inputs, 𝑎 is the vector of outputs from the network when 𝑥 is input,

and the sum is over all training inputs ,𝑥.

When applying the backpropagation algorithm, usually, two main assumptions are

taken place about the form of the cost function:

1. The cost function can be written as an average: 𝐶 =
1

𝑛
∑ 𝐶𝑥 𝑥

. Where x is

individual training examples. As we can see at the equation above, the

quadratic cost function has this form.

15

2. The cost function can be written as a function of the outputs from the neural

network. 𝑐𝑜𝑠𝑡 𝐶 = 𝐶(𝑎𝐿) where 𝐿 denotes the number of layers in the

network. As we can see at the equation above, the quadratic cost function

has this form. Since the quadratic cost for a single training example 𝑥 may

be written as 𝐶 =
1

2𝑛
∑ (𝑦𝑗 − 𝑎𝑗

𝐿)2𝑗 . Where 𝑦 is the corresponding desired

output; 𝑗 – index on the neuron.

The learning algorithm find weights and biases for the network, for the network to

output classify approximation for each input. To quantify how well the learning

algorithm achieving that goal the cost function take place.

The aim of the training algorithm is to minimize the cost func tion as a function of

weights and biases. The algorithm will find the weights and biases which minimize

the cost function, the algorithm is called gradient descent.

Usually we have limited number of training set. The learning algorithm should

generalize the problem and give set of weights and biases such that the network would

give the best approximation for a given input, making a small change in the set of the

weights and biases would not change much the number of training images classified

correctly. But the goal is to make changes in the weights and biases in order to get

improved in the performance of the network. Here comes the cost function, like the

quadratic cost function at the equation above, give the ability to figure out how to

make small changes in the weights and biases in order to get improvement in the

performance.

14. Gradient, Gradient descent, Stochastic gradient descent

The gradient descent adjust the weights according to the error they caused. The

gradient represents how two variables relate to each other, the relationship between

the network’s error and a single weight; how does the error vary as the weight is

adjusted. The right weight will produce the least error; the right weight will correctly

represents the signal contained in the input data and translates them to a correct

classification; the right weight will classify a “wheel ” in an input image to a “car”

label and not to a “ship” label.

During the learning of the neural network, it slowly adjusts weights so that they can

map signal to meaning correctly. The relationship between network Error and each

of those weights is a derivative
𝑑𝐸

𝑑𝑤
 - measures the degree to which a slight change

in a weight causes a slight change in the error.

The signal of the weight passes through activations and sums over several layers, we

use the chain rule of calculus:
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
 ·
𝑑𝑦

𝑑𝑥
 to march back through the networks

16

activations and outputs and finally arrive at the weight in question, and its

relationship to overall error.

With that equation we can calculate how a change in weight affects a change in Error

by first calculate how change in activation affects a change in Error and how a change

in weight affect a change in activation.

Feedforward network with single weight, chain rule:

𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑤𝑒𝑖𝑔ℎ𝑡
=

𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
 ·
𝑑𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

𝑑𝑤𝑒𝑖𝑔ℎ𝑡

Adjusting a model’s weights in response to the error it produces, until the algorithm

cannot reduce the error any more.

It’s a learning algorithm for neural networks.

The most common learning algorithm for neural networks is the gradient descent

algorithm although other and potentially better optimization algorithms can be used .

15. Learning rate

One of the parameter that can and should be set in order to make gradient descent to

work correctly. Before the run of the algorithm, we can choose the learning rate

parameter, it need to be small enough that we will get good approximation but at the

same time we don’t want it to be too small because the gradient decent algorithm will

work very slowly – affect the speed of the algori thm to get the equation solution.

It’s a training parameter that controls the values and size of weight and bias changes

in learning of the training algorithm.

16. MSE - Mean squared error

Measures the averages of the squares of the errors. The difference between the

estimators to the estimated. Used to evaluate the performance of an estimator. The

mean squared error is also useful to relay the concepts of bias, precision, and accuracy

in statistical estimation.

MSE =
1

𝑛
∑ (𝑌̂𝑖 − 𝑌𝑖)

2𝑛
𝑖=1

𝑛 – Number of predictions.

𝑌̂ – Vector of 𝑛 predictions.

𝑌 – Vector of observed values (vector of the real values).

(𝑌̂𝑖 − 𝑌𝑖)
2
 – Square of errors.

17

17. Epoch

An epoch is a complete pass through a given dataset. By the end of one epoch, the

neural network will have been exposed to every record to example within the dataset

once, differs from an iteration – many iterations can occur before an epoch is over.

An epoch is part of the learning algorithm in neural network. In order to calculate the

weights and errors the learning algorithm can pick out a randomly chosen mini -batch

of training inputs and train them, then pick out another randomly chosen mini -batch

and train with those, and so on, until the learning algorithm exhausted the training

inputs, which is said to complete an epoch of training. And then – start over with a

new training epoch.

Mini-batch: The learning algorithm pick a small number 𝑚 of chosen training inputs

𝑥1, . . . , 𝑥𝑚 and refer to them as a mini-batch.

It determines when training will stop once the number of iterations exceeds epochs.

18. MNIST data [28]

MNIST is the “hello world” of neural networks and deep learning datasets. Many

projects uses MNIST to test their neural networks in order to see if the net is actually

works. The MNIST database of handwritten digits has a training set of 60,000

examples, and a test set of 10,000 examples. With their correct classification. The

training data images are scanned handwriting samples from 250 people, half of whom

were US Census Bureau employees, and half of whom were high school students. The

images are greyscale and 28 by 28 pixels in size. The test set of the MNIST data also

are 28 by 28 greyscale images. It’s a good database for people who want to try

learning techniques on real-world data. The data is stored in a very simple file format

designed for storing vectors and multidimensional matrices .

Images from2 MNIST

This database is freely available.

2 http://yann.lecun.com/exdb/mnist/

18

19. Feedforward

Model of artificial neural network.

A feedforward neural network is a biologically inspired classificatio n algorithm. It

consist of a number of simple neuron-like processing units, organized in layers. Every

unit in a layer is connected with all the units in the previous layer. The weights on

these connections encode the knowledge of a network.

Data enters at the inputs and passes through the network, layer by layer, until it

arrives at the outputs. During normal operation, there is no feedback between layers.

This is why they are called feedforward neural networks.

Feed-forward networks have the following characteristics:

1. Perceptrons are arranged in layers, with the first layer taking in inputs and the

last layer producing outputs. The middle layers have no connection with the

external world, and hence are called hidden layers.

2. Each perceptron in one layer is connected to every perceptron on the next layer.

Hence information is constantly "fed forward" from one layer to the next, and

this explains why these networks are called feed -forward networks.

3. There is no connection among perceptrons in the same layer.

In our research, we have treated all the tasks and subjects mentioned up as free

parameters needed to be tested adapted and tuned for best results. Therefore, for

example a pre-trained ANN on the MNIST data set have been used to initialize out

ANN weights and several step function were considered. A detailed description of

this process is given in section VI.

20. Recurrent neural network

Model of artificial neural network

Artificial neural networks in which feedback loops are possible.

These models is to have neurons which fire for some limited duration of time, before

becoming quiescent. That firing can stimulate other neurons, which may fire a little

while later, also for a limited duration. That causes still more neurons to fire, and so

over time we get a cascade of neurons firing. Loops don't cause problems in such a

model, since a neuron's output only affects its input at so me later time, not

instantaneously.

19

21. Backpropagation

Backward Propagation of Errors. A specific technique for implementing weight for a

multilayered perceptron, MLP. The idea is to efficiently compute partial derivatives

of an approximating function realized by the artificial neural network (ANN) with

respect to all the processing neuron of the adjustable weight vector for a given value

of input vector. It’s a popular common algorithm for training ANN. Designing and

training an ANN using back propagation requires many arbitrary choices such as the

number and types of nodes, layers and learning rates. This choices can be critical.

The backpropagation algorithm is used in layered feed -forward ANNs. The artificial

neurons are organized in layers, and send their signals “forward”, and then the errors

are propagated backwards. The network receives inputs by neurons in the input layer,

and the output of the network is given by the neurons on an output layer. There may

be one or more intermediate hidden layers. The backpropagation algorithm uses

supervised learning, which means that we provide the algorithm with examples of the

inputs and outputs we want the network to compute, and then the error (difference

between actual and expected results) is calculated. The idea of the backpropagation

algorithm is to reduce this error, until the ANN learns the training data. The training

begins with random weights (or customized weights of other training), and the error

should be minimal when the algorithm is done.

It’s an algorithm for computing the gradient of the cost function and to understand

how changing the weights and biases in a network changes the cost function. This

algorithm was introduced in the 1970s and it’s one of the most important concepts of

learning in neural networks.

One of the expressions that we get when computing the gradient of the cost function

𝐶 is the partial derivative
𝜕𝐶

𝜕𝑊
 and

𝜕𝐶

𝜕𝑏
 , where 𝑤 is any weight and 𝑏 is any bias in the

network. The expressions express how quickl y the cost changes when there is a

change in the weights and biases. With this knowledge we can understand how

changing the weights and biases effect on the behavior of the network.

In order to compute the partial derivatives
𝜕𝐶

𝜕𝑊
 and

𝜕𝐶

𝜕𝑏
 the backpropagation algorithm

need to compute the errors for each 𝑗 neuron in each layer 𝑙 - 𝛿𝑗
𝑙.

Recap, this technique comes to calculate the gradient – relate weights to error.

Repeated method of chain rule of calculus for partial derivatives .

A unique form of backpropagation - backpropagation through time, BPTT,

specifically useful for recurrent neural networks, RNN, analyzing text and time

series. Each time step of the RNN is the equivalent of a layer in a feed -forward

network.

20

22. Vanishing Gradient Problem

Intuitively we can expect that the more hidden layers we have in the network the more

powerful the network is but this is not necessarily true. Suppose we have a neural

network that support image recognition with 4 hidden layers, each l ayer of neurons

responsible on the following, First layer: recognize edges; Second layer: recognize

Shapes, like Circle; Third layer: face; Forth layer: smile. These multiple layers of

abstraction seem to give deep networks a compelling advantage in learn ing to solve

complex image recognition problems. Moreover, there are theoretical results that

deep networks are more powerful than shallow networks. It’s a hard task to train such

deep network. When trying one with stochastic gradient descent by backpropagation

we can run into a problem, the deep network can perform the same as shallow network

or even worse. It’s easy to think that if we have a neural network and we add to it a

hidden layer it ought to make the network able to learn more complex problems an d

can classify better. But this is not always the case, it can even get worse.

In deep networks, different layers could learn at different speeds. Could be a situation

where later layers are learning well and earlier layers often get stuck during traini ng

and can learn almost nothing. This reason of learning slowdown connected to

gradient-based learning techniques. The opposite phenomenon can also occur, where

earlier layers are learning well and later layers often get stuck during training. Studies

have shown in some deep neural networks that the early hidden layers learn much

more slowly than later hidden layers - gradient tends to get smaller as we move

backward through the hidden layers. The gradient quantity controlled how rapidly the

bias changes and how rapidly the weights input to the neuron change during learning.

In conclusion it gives that neurons in the earlier layers learn much more slowly than

neurons in later layers. This phenomenon - vanishing gradient problem .

The problem can be avoided, although the alternative is not very attractive. The

opposite phenomenon as mentioned before is called exploding gradient problem .

Researches show that the gradient in deep neural networks is unstable - one of the

phenomenon can occur. These phenomenons occur due to training with gradient-based

learning in deep neural networks.

We need to pay attention that these phenomenons may be avoided or act differently

if we initialized the weight in the network in a different way. Neural networks can

response differently between different initialization - randomly or take the weights

from completely different problem.

Why these phenomenons occurs (vanishing gradient problem and exploding gradient

problem)?

The problems lies here:

When we take a look on how the gradient
∂C

∂b
 is been calculated and how the expression

is look like we can see that the gradient expression has a unique structure: product of

terms of the weight 𝑤𝑗 multiplied by σ′(𝑧𝑗) - which σ is the sigmoid activation

21

function and 𝑧𝑗 = 𝑤𝑗𝑎𝑗−1 + 𝑏𝑗 which is the weighted input to the neuron - 𝑤𝑗σ′(𝑧𝑗)

(disregard of the layer index which give little different expression - for a simplicity,

but it’s the same idea). It depends how we initialized the weights in the netw ork -

suppose we initialized randomly. We can see that the more terms we have in the

gradient expression the product will tend to exponentially decrease. The more terms,

the smaller the product will be. As we get closer to the later layers there is less te rms

in the product and if we have less terms in the product the result will be bigger.

Recall, later layers less terms bigger result of the gradient faster learn

 later layers learn better from earlier layers. This is the essential origin of the

vanishing gradient problem. This is not a proof but it 's a good reason of the problem.

We get the exploding gradient problem exactly the opposite case when the gradient

grow exponentially as we move backward through the layers. Gradient based learni ng

techniques makes different layers in the network tend to learn at wildly different

speeds. When using sigmoid neurons the gradient will usually vanish.

23. Regularization and Overfitting [12]

During the process of training the neural network , we can get into a problem so called

overfitting. One way to control and prevent overfitting is by regularization.

When we want to make our neural network better at generalization we should use a

regularization methods which known as the cross -entropy cost function.

When we have small set of training and using not many training examples we usually

train with larger number of epochs. What could happen is that the classification

accuracy on the training dataset can be very encouraging. On the other hand the

accuracy on the test dataset could be less encouraging, the learning on the test dataset

with small examples, can gradually slow down, and stop improving before get even

close to the final epochs, this phenomenon is called overfitting.

When we can probably assume that the learning algorithm is overfitting?

When the algorithm is more accurate in fitting known data, like training dataset, and

less accurate in making a prediction on data which the algorithm not seen before, like

testing dataset. Hence, the model’s accuracy has much better results on the training

dataset than on the testing dataset. If this is the case we say that our model is not

generalized.

The problem with the overfitting is that the model memorize the training dataset and

not learning to generalize the data.

Overfitting can occur when the model have too many parameters comparatively to the

number of observations the model got and it can be a result of t oo complex model

and to less training dataset .

If the model is overfitting we should reduce the model flexibility by better features

selection and better regularization techniques.

22

In contrast, poor classification accuracy on the training dataset could occur if the

model is too simple and a bad features selection which not describe the target well,

the classification accuracy can improved by increasing model flexibility.

A good technique to use in order to prevent overfitting is to use validation data –

early stopping. We train the model until the accuracy is saturated.

Other technique is to change the network architecture.

Another technique which can reduce overfitting called regularization techniques such

as weight decay or L2. The idea of regularization techniques is to change the cost

function and to add a term to it – regularization term. The regularization usually

improved network generalization, increase classification accuracies and reducing the

effect of overfitting.

The best technique is to augment the size of the training dataset , it can be done by

artificial augmentation of the existing data.

In modern network we can find the overfitting phenomenon and it’s a real problem in

neural networks, we need to have techniques to reduce this effect.

24. Deep Neural Networks

Deep learning is under the domain of Machine Learning. With deep learning we can

achieve multiple levels of representation and abstraction that can help to understand

how the data is organized within an image, text, sound etc.

There are well known deep learning algorithms with 2 main families.

Supervised learning algorithms:

1. Convolutional Neural Network,

2. Logistic Regression.

3. Multilayer Perceptron.

Semi supervised / unsupervised learning algorithms:

1. Restricted Boltzman Machines, RBM.

2. Deep Belief Networks, DBN.

3. Auto Encoders.

Until 2006, we fail to train deep architectures. Deep networks who trained with

backpropagation perform badly than shallow networks. The networks were limited to

two layers max.

23

a. Applications

1. Classifications

a. It falls under supervised learning category. The algorithm classifies a

sample to one of the, given in advanced, categories based on some

similarity measurement. Hence, it depends on the labeled datasets,

which usually achieved in advanced by human. Some samples of are

Text classification.

b. Face classification.

c. Object in an image classification.

d. Voice detection.

e. And more.

2. Clustering

Clustering is a way of grouping similar entities to groups. It falls under

unsupervised learning. Hence, labels to detect similarities is not required. Most

of the problems have data, which are not labeled.

With clustering we can achieve:

1. Anomaly detection.

2. Image segmentation.

3. Searching. Grouping items with in an image / sound / video .

4. And more.

3. Predictive Analytics

Statistical techniques in order to make predictions on future events. To do so,

the system need to be exposed to enough data and to establish correlations

between the present and the future.

With predictive analytics we can achieve:

1. Fraud detection

2. Risk management

3. CRM analytics

4. Human healthcare

5. And more.

25. Convolutional Neural Networks

Convolutional Neural Networks, CNN or ConvNet in short, are similar to Neural

Networks as we seen above and use the same ideas. Ideas such as backpropagation,

gradient descent, regularization, non-linear activation functions. Build up from

neurons that have learnable weights and biases. Each neuron receives inputs and

performs a dot product. Convolutional Neural Network took their inspiration from

living organisms. The visual cortex of an animal contains a complex arrangement of

cells. These cells act as local filters over the input space. The work of convolutional

24

neural networks start at 1968. But the modern subject of convolutional networks was

published at 1998.

a. Convolutional Neural Networks Architecture

The CNN use a different architecture than artificial neural network, using this

architecture makes convolutional networks fast to train. With this architecture we can

train deep, many-layer networks. The regular neural networks architecture don’t scale

well for many use cases, this is because there is a wasteful and huge number of

parameters that can be reduced; the full connectivity between the layers can lead to

over fitting. One of the advantages of the CNN architecture is, when using it, it makes

the algorithm fast to train and it helps to train many layers network (deep lear ning).

Artificial neural network with

fully connected layers – every

neuron in the network is connected

to every neuron in adjacent layers.

CNN use a different architecture

than this.

In general, a simple CNN is a sequence of layers, each layer is tran sforms a volume

of activations to another through a differentiable function. There is four main types

of layers which the CNN is built from: Convolutional Layer, RELU, Pooling Layer,

and Fully-Connected Layer. CNN for image dataset classification could hav e the

following architecture which built from the following layers:

Input Convolutional RELU Pooling Fully Connected

(In general, the architecture can be built from several layers of convolutional –

pooling. Before the fully connected layer, there can be layers like softmax).

The input layer will contain the pixel values of the image (if it’s an image context

problem).

The Convolutional layer will compute the output of neurons that are connected to

local regions in the input, each computing a dot product between their weights and a

small region they are connected to in the input volume.

The RELU layer, will apply an elementwise activation function, such as the 𝑓(𝑥) =

max(0, 𝑥) thresholding at zero. RELU stands for Rectified Linear Units. This layer

Hidden layer

Output layer

Input layer

Hidden layer

25

contains neurons that applies the activation function. It’s not affecting the receptive

fields of the convolution layer and increases the nonlinear properties of the decision

function and the overall network. To increase nonlinearity, other functions can

applies as well, like the sigmoid function σ(𝑥) = (1 + 𝑒−𝑥)−1.

The Pooling layer perform a down sampling, progressively reduce the amount of

parameters and computation in the network, and control overfitting. The Pooling

Layer operates independently on every feature map and resizes it.

The most common function that do so is max pooling – output the maximum activation

in a specified region. For example, pooling layer can take a region of 2 x 2 neurons

from the feature map layer (the previous hidden layer) and summarize it to get the

maximum activation from this region. The needed of the pooling layer is to perform

a down sampling and to seek if the given feature is found in the region. There is a

possibility to use other technique instead of outputting the maximum activation, like

average pooling or L2 pooling which means to output the square root of the sum of

the squares of the activations in the region.

The Fully Connected layer will compute the class scores. Neurons in a fully connected

layer have full connections to all activations in the previous layer.

The input neurons in convolutional net connected to a layer of hidden neurons such

that each neuron in the first hidden layer will be connected to a small region of the

input neurons:

This small region, marked in bold, is called local receptive field. As we can see, the

input neurons size 14 x 14 is connected to a neuron in the hidden l ayer. The size of

the hidden layer is 12 x 12 because of the size of the local receptive field, 3 x 3. All

this is true if we moved the local receptive field by 1 neuron. This parameter (of 1

neuron move) is called stride length. Each hidden neuron has a b ias and the same

weights (shared weights) and bias (shared bias) is been used for all the 12 x 12

neurons in the hidden layer. The meaning is that all the neurons in the hidden layer

detect the same feature, a feature can be an edge or other type of shape in an image

(The definition of the shared bias and weights are defining the kernel or filter).

14 x 14 input neurons 12 x 12 hidden layer

26

Usually CNNs use more than one feature map and detect several different kinds of

features, each feature is being detectable across the entire image.

As mentioned before, convolutional neuron network architecture use shared weights

and biases and this give a first advantage on the regular fully connected neural

network because the reduction in the number of the parameters been used.

In order to calculate the output of the j,k hidden neuron we should calculate the

following equation:

 𝜎(𝑏 + ∑ ∑ 𝑤𝑙,𝑚
𝑛
𝑚=0 𝑎𝑗+𝑙,𝑘+𝑚

𝑛
𝑙=0)

𝜎 – Activation function.

b – Shared bias.

n – Square root of the numbers of neurons in the local receptive fields.

𝑤𝑙,𝑚 – Shared weights.

𝑎𝑗+𝑙,𝑘+𝑚 – Input activation at (j+l), (k+m) position.

It’s easy to think that the name convolutional neural network came from this equation

because of the fact that the left side of the equation (The multiplication) is called

convolution operation in mathematics, but the name is by incidentally.

Pooling layer is connected to each feature map, if we have 5 features than there will

be 5 pooling in the pooling layer

An example of convolutional neural network architecture. The

Final layer is a fully connected layer – every neuron from the

pooling layer is connected to every one of the neurons in the last

layer.

The convolutional neural network as demonstrated can be trained using stochastic

gradient descent and backpropagation. The using of backpropagation in convolutional

neural network is different from the backpropagation in the regular fully connected

neural network. The root of the differences is in the derivation.

CNN are deep neural network that is currently the state of the art in image processing.

They used widely every year on contests like ImageNet to increased accuracy on

accepted benchmark.

Hidden layer – feature

map

Input neurons Fully connected Max - pooling

27

26. BCI – Brain Computer Interface

Brain Computer Interface combine hardware and software communication system that

permits cerebral activity alone to control computers and other devices. BCI enabl es

to interact with the surroundings, without the involvement of peripheral nerves and

muscles, by using control signals generated from electroencephalographic activity.

BCI use brain signals to gather information on user intention which record and

measures brain activity and translate that information into electrical signals. BCI

creates an interactions between humans to external devices, creates an interface to

control external devices with the use of the brain of the human only. This kind of

interface could provide to humans that suffering from motor disabilities an

improvement on their quality life.

BCI can recognize a set of patterns in brain signals. There are several stages to do

so:

a. Get the Signals. Capture the brain signals and make noise reduction .

Preprocessing the signals in order to be able to process it in more a convenient

way;

b. Feature Extraction. Identifies discriminative information in the brain signals

that have been recorded. This can be a challenging job, because of the many

mixed signals with large number of sets activity in the brain that overlap in

time and space, and we don't want to loss information;

c. Classification, classify the signals to achieve pattern recognition in order to

decipher the user’s intentions;

d. Interface Control, translate the classified signals into the user desired

commands for any kind of device such as a computer.

BCI System

As explained above, this figure presents a design of a BCI system. Electrodes on the

head acquire the signals from the brain.

1. Get the Signal 2. Feature

extraction
3. Classification 4. Interface

Control

C
o

m
m

an
d

s

Device

28

The BCI monitor the brain activities to get the information from the brain in order to

translate and use it. There are two types of brain activities:

a. Electrophysiological:

Related to the electrical activity that occur in the brain.

Between the neurons there is a process of exchanging information, this activity

creates the Electrophysiological and it generated by electro -chemical

transmitters. The neurons activities generate ionic currents. There is a large

variety of current pathways between the neurons. Electroencephalography,

Electrocorticography, Magnetoencephalography, and electrical signal

acquisition in single neurons measure electrophysiological activity .

In order to use this type it consist of a set of sensors that acquire

electroencephalography signals from different brain areas. The quality of the

information is affected by background noise and others.

b. Hemodynamic:

Related to the blood and glucose in the brain that active neurons at a greater

rate than in the area of inactive neurons. The blood str eam in the brain is pass

in the glucose and oxygen results in a surplus of oxyhemoglobin in the veins

of the active area and in a distinguishable change of the local ratio of

oxyhemoglobin to deoxyhemoglobin. The changes of the blood stream can get

an information regarding the activity in the brain.

The Hemodynamic type is different from the Electrophysiological, its measure

the hemodynamic response and can be categorized as indirect approach and it's

not directly related to neural activity.

The most common type usage is to get the information from the brain through

Electrophysiological.

Methods to get neuroimaging

Method Activity
measured

Measurement Risk

1 EEG Electrical Direct Non-invasive

2 MEG Magnetic Direct Non-invasive

3 ECoG Electrical Direct Invasive

4 fMRI Metabolic Indirect Non-invasive

5 NIRS Metabolic Indirect Non-invasive

 Our focus will be only on EEG.

29

27. Techniques to improve accuracy & performance

Enhancing a machine learning model can be a challenging task. There are sever al

techniques and strategies that we will explore. To enhancing our model in “only” 1%

can be considered as a success. A predictive machine learning model can be built on

different ways. But there are proven ways to improve the accuracy an d the

performance of the model.

In order to improve accuracy we can look at the data set and at the model itself.

It is highly recommended to understand the given problem, the domain of the problem

and know the data and its structure, this can help to improve a model’s accuracy.

a. Augment the training data.

Adding more data to the training data set can give to the model better

understanding about the data. The more data the training model see in the

training process it will give more accurate prediction on the testing dataset.

If we don’t have the option to add more data to the training set, there are

techniques to manipulate the existing data and to augment it [24].

b. ANN, Ensemble of networks: create several different neural networks. Get the

result from each one and determine the best classification. Even though the

networks would all have similar accuracies, they might make different errors,

due to the different initializations.

c. Tune the algorithm

Each machine learning algorithm has a parameters that can be tuned. These

change can impact the accuracy outcome. In order to find the optimum value

for each parameter to improve the accuracy of the model can be a hard task and

in order to do so we should run simulations process to test it.

For example, regarding ANN there are parameters such as learning rate, deltas,

momentum number of epochs. It is even considered to change the architecture

– add or reduce layers (CNN – add or reduce pooling or fully connected layer).

Change the number of training epochs and regularization, can help to reduce

the effects of overfitting.

Using the right cost function can also influence the accuracy.

d. Cross validation

With cross validations we can find the right answer to the question. We save

data set samples a side which we didn’t train the model on, and test the model

on those group of samples before finalizing the model.

It helps to achieve more generalized relationships.

e. Weight initializations

ANN, when done to design the neural network we need to initial weights and

biases. There can be a big difference in the accuracy of the system if we choose

30

one initialization approach to the other. The intuitive approach is to give

random initialize of the weights and biases, there is a better way to initialize

the system to have the ability to learn faster and give more accurate results.

Researchers’ shows that if we take well learned weights and biases on a

completely different topic from our system, and initial our system with those

values we can improve the results substantially.

f. Multiple algorithms

For different domain problems there are different machine learning algorithms .

For each problem we can use several algorithms that can fit to the problem. It

is not easy to pick the right machine learning algorithm for a given problem,

the intuition comes with experience and incessant practice. Some algorithms

are better to a particular type of data sets than others. We can apply several

different algorithms to test who will give the best accuracy. We might need to

adjust the data structure from one algorithm to another.

g. Overfitting – see III.23.

31

28. Tools

As part of the project, we explore several tools that can be used in order to sample,

record and give an interface of the electrical activity of the brain, EEG. There are

several tools on the market. There are “light” equipment that can be used to sample

the EEG waves, which can be used for home or research based needs. We examine

the following tools:

a. openBCI – Open source Brain Computer Interface [2]

OpenBCI is a tool used to measure and record electrical activity produced by the

brain (EEG), muscles (EMG), and heart (EKG). The OpenBCI boards can be

integrated with open-source EEG signal processing tools like OpenBCI GUI, or

others.

The hardware is programmable; it has an integrated microcontroller with digital and

analog pins, similar to an Arduino and can be programmed through the Arduino IDE.

OpenBCI Board.

The figure presents the 32bit OpenBCI Board is an Arduino-compatible, there are 8-

channel neural interface with a 32-bit processor.

The OpenBCI 32bit Board can be used to sample brain activity (EEG), muscle activity

(EMG), and heart activity (EKG). The board can communicates wirelessly to a

computer via the OpenBCI programmable USB dongle. It can also

communicate wirelessly to any mobile device or tablet compatible with Bluetooth

Low Energy (BLE).

32

3D-printed headset that records

brainwaves and converts them

into signals.

The figure presents the openBCI headset, it capable of allowing the wearer’s

brainwaves to control software and hardware.

OpenBCI accessible to researchers and developers with no hardware experience.

OpenBCI boards have a growing list of data output formats, making them compatible

with an expanding collection of existing biofeedback applica tions and tools.

b. Emotiv EPOC / EPOC+ [1]

Brain Computer Interface and Scientific Contextual EEG. 14 EEG channels + 2

references. A wireless EEG system. Provides access to high quality, raw EEG data

using SDK.

emotive EPOC /

EPOC+ head

set.

The headset come with software application. Real -time display of the Emotiv headset

data stream. Record and replay files in binary EEGLAB format. File converter

included to produce *.csv format.

33

emotiv EEG display

EMOTIV Epoch+ is a 14 channel wireless EEG, designed for contextualized research

and advanced brain computer interface (BCI) applications.

Features:

 Easy to fit and flexible design

 Wireless and rechargeable

 Lithium battery providing up to 12 hours of continuous use

 Provides access to Raw EEG data with software subscription

Technical Specifications:

Signals: 14 channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4

34

Signal resolution

 Sampling method: Sequential sampling. Single ADC

 Sampling rate: 128 SPS or 256 SPS* (2048 Hz internal)

 Resolution: 14 bits 1 LSB = 0.51μV (16 bit ADC, 2 bits instrumental noise

floor discarded), or 16 bits

 Bandwidth: 0.2 – 43Hz, digital notch filters at 50Hz and 60Hz

 Filtering: Built in digital 5th order filter

 Dynamic range (input referred): 8400μV(pp)

 Coupling mode: AC coupled

Connectivity

 Wireless: Bluetooth® Smart

 Proprietary wireless: 2.4GHz band

Power

 Battery: Internal Lithium Polymer battery 640mAh

 Battery life: up to 12 hours using proprietary wireless, up to 6 hours using

 Bluetooth Smart

Compatibility

The EMOTIV Epoc+ neuroheadset connects wirelessly to PCs, tablets, and

smartphones running Windows, Linux, MAC OSX, Android or iOS.

35

IV. The Problem and its Sources

1. Channels reduction

Professional EEG recording tools are expensive. Affordable EEG equipment are

mostly enables limited scale recording. The more channels the tool can record the

more expensive it is. Generally, more channels enables better learning and analyzing.

One of the main goals in such case is to gain from 128-channles recorder equivalent

knowledge as the equipment’s with less channels. What is the differences between

them in terms of classification accuracy? In other words, what are the channels which

are more discriminative than others?

EEG equipment with vast amount of channels are not accessible to everyone. This

unmet need for a less expensive EEG has enticed a number of smaller companies to

offer products that supposedly fill this market demand.

2. Improve classification accuracy

One of the problems is to find a well-defined dataset with enough data such that the

machine-learning algorithm will be able to learn and generalize well enough to give

sufficient results on unseen testing samples . Finding such EEG dataset is important

because to creating one can be real and long project. One of the rules of thumb is the

more data an algorithm can train on, the more accurate it will be. In real world

classification problems, it can be expensive to acquire a big training set – traditional

learning algorithms often perform poorly. The goal of the learning is to succeed to

get the best classification and the best accuracy. The classification accuracy can be

evaluate by the number of correct predictions made divided by the total number of

predictions made.

36

V. The System

1. System description

In any classification system, feature selection and extraction is main and important

phase toward successful classification system. In our case it’s hard to think directly

about which features and which classifiers to use in order to get the best results. In

such case Neural Network are general and good option due to their ability to get the

data as is, calculate the feature and learn by itself.

The specification of our Neural Network is as follow:

We have used two hidden layers ANN trained by the backpropagation algorithm. The

System can be configured with several different functionalities and be set with values

upon parameters as initial state. In such case few free parameters could be selected

and tuned.

 Given weights:

Generally ANN start the learning process with random weight. Many

researches in the field shows that starting with weights learned for other

tasks improve the learning process.

Run the network with given weights and biases, those weights were

trained in advanced on other different topic. (Details in next section)

In order to enable such initialization, the current network and the pre-

trained network, should contain the same number of neurons in the first

layer.

Augment training data:

Run the network with an extended version of the training data. There

were implemented several techniques in order to expand the data. With

this approach we can get better results.

Hidden layers:

 Number of hidden layers.

Number of neurons in each hidden layer .

Unipolar / Bipolar:

 Select Unipolar or Bipolar neuron

 Unipolar:
1

1 + 𝑒−𝑥

 Bipolar:
−1

2 + 𝑒−𝑥

37

 Learning rate:

To make gradient descent work correctly, we need to choose the “right”

learning rate.

Weight decay rate:

 Set weight decay rate value.

Number of Epochs:

 Choose the number of epochs.

Resilient gradient descent:

 Enable / Disable resilient gradient descent

Before start to train the network:

 The samples were shuffled (randomize shuffle).

 The data were normalized.

Input layer (first layer):

 We have two-dimensional array, size: 314 x 22.

 There are 22 channels – 22 columns.

 Each trail duration length is 314 – 314 rows.

 (We can look at it as an image with 314 by 22 pixels)

We get: 314 x 22 = 6,908, a one-dimensional array.

 6,908 neurons in the input layer (first layer).

(See EEG Datasets [18])

Output layer (last layer):

Contain 4 neurons, indicate the 4 categories of the trails. (See EEG Datasets

[18])

38

2. EEG Datasets

Several datasets were considered, were the main goal is a will defined ground trothed

data set with many samples as possible. The purpose was to find a well-defined EEG

dataset, which outline a human motor movements. It is a difficult task to find one we

could use. Several datasets were examined in this project and the following two were

picked to be used in our project :

a. An efficient P300-based brain-computer interface for disabled subjects [26]

We start to analyze and learn this dataset, but we considered to neglect it because of

the poor definition, and to move on.

b. BCI Competition 2008 – Graz data set A [18]

This is the EEG dataset that we choose to work with. This data set consists of EEG

data from 9 subjects. The data is divided to 4 classes that presents 4 motor imagery

tasks, 4 different movement Imagination.

Experimental flow:

The subjects were sitting in a comfortable armchair in front of a computer screen. At

the beginning of a trial (t = 0s), a fixation cross-appeared on the black screen. In

addition, a short acoustic warning tone was presented. After two secon ds (t = 2s), a

cue in the form of an arrow pointing either to the left, right, down or up

corresponding to one of the four classes , as describe in the table below and in the

article.

Class 2 - Right Hand Class 1 - Left Hand

Class 4 – Tongue Class 3 - Both Feet

39

The arrow was appeared and stayed on the screen for 1.25s, in this time the subject

perform the desired motor imagery task. No feedback was provided. The subjects

were ask to carry out the motor imagery task until the fixation cross disapp eared from

the screen at t = 6s. A short break followed where the screen was black again. The

paradigm time flow:

The data sets were stored in 9 files that represent 9 subjects.

Each file contain:

 288 trials: 12trials x 4classes = 48trials x 6runs = 288trials

The files were stored in General Data Format (GDF). In order to load the data sets

via MATLAB we used BioSig toolbox3. And used the command:

S parameter – Present a matrix 𝑆𝑚×𝑛 which contains the signals. Number of columns

𝑛 = 25 and 𝑚 changing from file to file.

(

𝑆11 ⋯ 𝑆1(𝑛−3) ⋯ 𝑆1𝑛
⋮ ⋱ ⋮

𝑆𝑚1 ⋯ 𝑆𝑚(𝑛−3)⋯ 𝑆𝑚𝑛

)

The first 22 columns are EEG (each column different channel) and the last three are

EOG signals.

The –H- parameter - present header (Meta data) about the signals with well -defined

structure. The header structure contains event information that describes the structure

of the data over time. The fields type and event types description are mentioned in

the article.

The recording description and the experimental paradigm can be found in the article

as well.

3 http://biosig.sourceforge.net/

 [S, H] = sload(’A01T.gdf’);

EEG EOG

40

In order to use the function ‘sload’ on MATLAB we need to run one time the

following code:

c. Data sets retrieval Process

The data sets were collected from a well-defined structure.

As a start, we pull out the data from the given files and prepare the following data

structure:

2-dimentional array: 2,592 x 6,908

Data description: 2592 = 288 t ria ls x 9subject

 6908 = 314duration x 22channels

Each row in the 2-dimentional array is a vector of one trial with all the

relevant data on the trial (all the channels combined) .

BIOSIG runs on Matlab and Octave.

This is a script installing all components in an automatically.

1) extract the files and

2) save the BIOSIG files in <your_directory>

3) start matlab

 cd <your_directory>

 biosig_installer

4) For a permanent installation, save the default path with

 PATH2RC or

 PATHTOOL and click on the "SAVE" button.

5) For removing the toolbox

 remove the path to

 HOME/tsa

 HOME/NaN

 HOME/BIOSIG/ and all its subdirectories

41

VI. Our Approach

1. The Process

a. Create EEG data set

Creating EEG data set was considered. Few tools were examinee to record EEG

brain waves, Emotiv Epoch [1] and openBCI [2] are the leading candidates due

to their availability and price

Because of the hard work needed to record such experiments and the lack of

students for such experiments we have decided to neglect it and to find well-

defined EEG dataset.

b. Searching for EEG data set

EEG well-defined data set is highly precious commodity. It is a difficult task

to find one. A few data set were examinee and tested. There are 2 data sets that

were the last candidates and eventually one was elected [18].

c. Machine learning developers tools

Learning developers’ tools for machine learning against ANN, CNN: Learning

MATLAB, learning MatConvNet.

d. Pool out the data set

After selecting Graz data set A [18] as our EEG dataset we needed to pool it

out and create data structure for our needs. Data file description and the

metadata are explained in the document [18].

All data sets are stored in the General Data Format .

The process:

1. Save data and metadata to Excel file.

MATLAB code, See IX.A2.

 Do this process to all 9 GDF files.

2. Create new *.csv file from the given excel file, s_t_1.csv. Take only the

EEG data from the s_t_1.csv file by the given index type and position.

Create excel files with Java code, See IX.A3.

Output: 9 csv files which contain the EEG dataset – a table with 25 columns

(22 EEG + 3 EOG) and 90432 rows (314duration x 288trials)

3. Save the 9 csv files in *.mat format.

MATLAB code, See IX.A4.

4. Adjust the dataset.

Create one file, MATLAB code, See IX.A5.

42

5. Remove EOG data (3 columns).

MATLAB code, See IX.A6.

6. Create array with the right structure,

2592288(number of trials) x 9 (subjects) rows, 6908314 (duration) x 22 (eeg channels).

Each row is a full 1 trial with 314 duration of 22 eeg channels.

MATLAB code, See IX.A7.

Do the same process 1 – 6, also to the test dataset.

7. Save train labels

MATLAB code, See IX.A8.

The test labels were given.

e. Adjust the algorithm

Take working neural network system and adjust it to our needs, in order to

work with the prepared in advanced EEG dataset.

f. Simulations

Start making simulations and observe the results .

g. Improvements and analysis

Improve classification accuracy, by known techniques and methods. In

addition, continue to make simulations accordingly.

A technique that was taken into account to improve accuracy was to use

different machine learning algorithms - CNN, neglected system have been

developed and adapted to our need. Poor results have been reached, which

could be improved, but discarded to lack of computation power.

43

2. Improvements and analysis

As we saw earlier at the “Techniques to improve accuracy & performance” section

III.27, there are several techniques that we could use in order to enhance our model,

we applied some of them.

We looked at our data and our model, in order to improve classification accuracy we

realized that we should act as follows:

Weight initialization – initiate the system

As we can see at the simulations type B, D & E when we choose one

initialization approach to the other the classification accuracy is changed.

We show that if we take pre-learned weights on a completely different topic

from our system such as MNIST problem, and initial our system with those

values we can improve the results substantially.

See section VI.2.a and simulations type B, D & E at VI.4.

Extending the data set

Machine learning literature proves the fact that larger training data sets leads

to more generalization and avoid over fitting. The more data the training model

see in the training process it will give more accurate prediction on the testing

dataset. We do not have an option to add a native data to the training set ,

therefore we have considered techniques to manipulate the existing data and to

augment it . See Data Augmentation section VI.2.b.

During the process of training our neural network, we got into a problem so

called overfitting, as we can see in the simulations section VI.4. We have

noticed that the model memorize the training dataset and not learning to

generalize the data. We didn’t have the ability to make a better features

selection. In order to solve overfitting problem we used regularization

technique such as weight decay. We have also augment the size of the training

dataset, which was done by artificial augmentation of the existing data as

mentioned earlier.

Simulations with data augmentation can be found under simulations type C &

D.

44

Tune the algorithm

Our machine learning algorithm have a set of free parameters that can be tuned

as mentioned at the system description section V.1. As we can see at the

simulations section (from VI.4) – all types, we tune the system parameters in

order to observe if the classification accuracy is improved.

a. Initiate the system - weight initialization

As we have already seen at “Techniques to improve accuracy & performance” (III.27)

section, one of the techniques to improve model accuracy is to initialize the Artificial

Neural Network with pre learned weights and biases based on a completely different

topic training.

We can choose to initiate the weights and biases with random v ariables, but there are

better ways to initiate weights and biases and help the model to get better

classification accuracy and to learn faster.

The other topic that we choose is the MNIST problem [28]. The original problem has

784 input neurons at the ANN, the images are greyscale and 28 by 28 pixels in size

(28x28 = 784).

Our original EEG wave size is 6908314(duration) x 22(EEG channels).

In order to be able transfer weights from one ANN to another , both problems must

have the same sizes and dimensions. This similarity can be easily done with hidden

layers, but have to be carefully achieved by a manipulation on the examples sizes.

Different sizes can give different accuracy. We have tried several sizes as we can see

in the simulations section (from VI.4):

EEG size MNIST size size

22 x 314 --------------------------------------- 6908

24 x 288 72 x 96 6912

24 x 294 84 x 84 7056

25 x 256 80 x 80 6400

21 x 210 63 x 70 4410

4 x 121 22 x 22 484

22 x 315 77 x 90 6930

45

b. Data Augmentation

In order to improve the results on the test data, one technique is to expand the training

data. In the following section we give description of some of the techniques we have

applied for this purpose.

Original

EEG signal, 22channels x 314duration = 6908values

Elastic deformation

Augmentation method - elastic deformation, this technique described in this paper

[23].

The process:

We wanted to augment the EEG dataset. In order to do so, we needed to create for

each image an Elastic Deformations image respectively as mentioned in the paper.

For MNIST dataset (size: 28 x 28 px)

Before: After:

46

EEG dataset (1 x 6908 – 22 x 314), after elastic deformation:

To achieve elastic deformation we used MATLAB, code can be found at IX.A1.

White Gaussian noise

Add white Gaussian noise to signal.

EEG dataset (1 x 6908 – 22 x 314), after adding white Gaussian noise:

47

Pitch shift [24]

Pitch Shifting is a way to change the pitch of a signal without changing its lengt h.

Lowpass filter

Filter that allows signals below a cutoff frequency and attenuates sig nals above the

cutoff frequency.

48

Smooth moving

Moving average (default). A lowpass filter with filter coefficients equal to the reciprocal of the span.

Smooth loess 0.005

Local regression using weighted linear least squares and a 2nd degree polynomial model

49

Smooth lowess 0.005

Local regression using weighted linear least squares and a 2nd degree polynomial model

Smooth rlowess 0.005

A robust version of 'lowess' that assigns lower weight to outliers in the regression. The method assigns zero

weight to data outside six mean absolute deviations.

50

3. Types

a. Subject dependent vs Subject independent

In the case of subject dependent we test the system with unseen samples from the

same subjects we have used to train it while in subject independen t the system is

tested using unseen samples from new subject that was introduced to the system in

the training process. It is clear that Subject independent is more difficult than subject

dependent, therefore anticipated result for MSE should be less.

The given datasets were taken from 9 subject. We have divided the datasets to train

dataset and test dataset. The article ‘BCI Competition 2008 – Graz data set A’ [18]

not mentioned if it’s the same subjects, which the test and the train datasets were

recorded from. It means that we cannot know if the simulations is for subject

depended or subject independent.

b. Channel group size / channel reduction

We have used a dataset with 22 electrodes, which were used to record the EEG

signals. 22 electrodes are translated to 22 EEG channels. One question we tried to

answer in these experiments is the effect of the size of the group of channels on the

system’s accuracy. We can see at the next section that there are channels which are

more discriminative than others and the impact of less channels in the group in terms

of accuracy VI.4.b.

51

4. Simulations

Type A. 22 channels.

Simulations without augmentation methods nor given weights. As we can see, at almost all

simulations the results on the training set are much better than the results on the testing set.

Train
size

Test
size

Augment
methods

Given
weights

Hidden
Layers

Bipolar /
Unipolar

Learning
 Rate

Epochs Resilient Results
MSE

1 2592 2592 none none 50 50 Bipolar 0.03 80 enable Train: 0.91667

Test: 0.30054

2 2592 2592 none none 60 Bipolar 0.03 80 enable Train: 0.75424
Test: 0.37269

3 2592 2592 none none 50 Unipolar 0.03 80 enable Train: 0.49846
Test: 0.33102

4 2592 2592 none none 50 Bipolar 0.03 80 disable Train: 0.83102
Test: 0.375

5 2592 2592 none none 40 Bipolar 0.03 80 enable Train: 0.78009
Test: 0.37076

6 2592 2592 none none 80 Bipolar 0.03 80 enable Train: 0.6983
Test: 0.35455

7 2592 2592 none none 50 Bipolar 0.04 80 enable Train: 0.88426
Test: 0.36188

8 2592 2592 none none 50 Bipolar 0.03 80 enable Train: 0.80015
Test: 0.37963

9 2592 2592 none none 100 50 Bipolar 0.03 80 enable Train: 0.84722
Test: 0.32215

10 2592 2592 none none 100
100

Bipolar 0.03 80 enable Train: 0.64159
Test: 0.3125

11 2592 2592 none none 100 Bipolar 0.03 100 enable Train: 0.64738
Test: 0.36343

12 2592 2592 none none 100 Bipolar 0.05 100 enable Train: 0.60494
Test: 0.33912

13 2592 2592 none none 100 Bipolar 0.06 100 enable Train: 0.56289
Test: 0.32832

14 2592 2592 none none 100 Bipolar 0.01 100 enable Train: 0.35841
Test: 0.29707

15 2592 2592 none none 100 Bipolar 0.04 100 enable Train: 0.67631
Test: 0.36188

52

Type B. Given weights, 22 channels.

Simulations with given weights – initiate the system with given values . As we can

see, the test result were highly improved. But still at almost all simulations the results

on the training set are much better than the results on the testing set.

Train
size

Test
size

Augment
methods

Given
weights

Hidden
Layers

Bipolar /
Unipolar

Learning
Rate

Epochs Resilient Results
MSE

1 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100 Bipolar 0.01 80 enable Train: 0.87886
Test: 0.48534

2 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100 Bipolar 0.008 100 enable Train: 0.84375
Test: 0.48958

3 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100 Bipolar 0.005 100 enable Train: 0.77932
Test: 0.48573

4 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100 Bipolar 0.007 100 enable Train: 0.78897
Test: 0.47261

5 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100 50 Bipolar 0.008 100 enable Train: 0.90548
Test: 0.46142

6 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100
100

Bipolar 0.008 100 enable Train: 0.9267
Test: 0.48032

7 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100 Bipolar 0.008 100 disable Train: 0.85224
Test: 0.48032

8 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100 Unipolar 0.008 100 enable Train: 0.45255
Test: 0.39815

9 2592 2592 none EEG: 24 x 288
Given: 72 x 96

100 Bipolar 0.03 100 enable Train: 0.9865
Test: 0.46412

10 2592 2592 none EEG: 24 x 294
Given: 84 x 84

100 Bipolar 0.008 100 enable Train: 0.85378
Test: 0.4865

11 2592 2592 none EEG: 24 x 294
Given: 84 x 84

100 Bipolar 0.009 100 enable Train: 0.87269
Test: 0.48148

12 2592 2592 none EEG: 25 x 256
Given: 80 x 80

100 Bipolar 0.008 100 enable Train: 0.82523
Test: 0.47377

13 2592 2592 none EEG: 25 x 256
Given: 80 x 80

100 Bipolar 0.005 100 enable Train: 0.73071
Test: 0.47299

14 2592 2592 none EEG: 21 x 210
Given: 63 x 70

100 Bipolar 0.008 100 enable Train: 0.75116
Test: 0.47647

15 2592 2592 none EEG: 4 x 121
Given: 22 x 22

100 Bipolar 0.008 100 enable Train: 0.43056
Test: 0.39082

53

Type C. Augmentation methods, 22 channels.

Simulations with data augmentation. As we can see, the test result were improved from Type A.

But still at almost all simulations the results on the training set are much better than the results on

the testing set.

Train
size

Test
size

Augment
methods

Given
 weights

Hidden
 Layers

Bipolar /
 Unipolar

Learning
Rate

Epochs Resilient Results
MSE

1 5184 2592 elastic
deformation

none 50 Bipolar 0.03 80 enable Train: 0.92091
Test: 0.39468

2 5184 2592 White
Gaussian
noise

none 50 Bipolar 0.03 80 enable Train: 0.91281
Test: 0.3777

3 5184 2592 pitch shift none 50 Bipolar 0.03 80 enable Train: 0.75154
Test: 0.37346

4 5184 2592 lowpass filter none 50 Bipolar 0.03 80 enable Train: 0.8206
Test: 0.39005

54

Type D. Given weights, augmentation methods, 22 channels.

Simulations with data augmentation and given weights. As we can see, the test result

were improved. But still at almost all simulations the results on the training set are

much better than the results on the testing set.

Train
size

Test
size

Augment
methods

Given
 weights

Hidden
Layers

Bipolar /
Unipolar

Learning
 Rate

Epochs Resilient Results
MSE

1 5184 2592 elastic
deformation

EEG:
4 x 121

Given:
22 x 22

100 Bipolar 0.008 100 enable Train: 0.46393
Test: 0.41705

2 5184 2592 elastic
deformation

EEG:
24 x 288

Given:
72 x 96

100 Bipolar 0.008 100 enable Train: 0.86941
Test: 0.48418

3 5184 2592 white
Gaussian
 noise

EEG:
24 x 288

Given:
72 x 96

100 Bipolar 0.008 120 enable Train: 0.90548
Test: 0.48765

4 5184 2592 white
Gaussian
noise

EEG:
 24 x 288

Given:
 72 x 96

100 Bipolar 0.007 120 enable Train: 0.85552
Test: 0.49074

5 5184 2592 white
Gaussian
noise

EEG:
24 x 288

Given:
 72 x 96

100 Bipolar 0.006 120 enable Train: 0.84008
Test: 0.47955

6 7776 2592 white
Gaussian
noise

&

elastic
deformation

EEG:
24 x 288

Given:
72 x 96

100 Bipolar 0.008 50 enable Train: 0.86523
Test: 0.49653

7 5184 2592 smoothing EEG:
24 x 288

Given:
72 x 96

100 Bipolar 0.008 65 enable Train: 0.78665
Test: 0.50424

8 7776 2592 smoothing -
smooth(x,
'moving')

&

smoothing -
smooth(x,
0.005,'lo
wess')

EEG:
22 x 315

Given:
77 x 90

100 Bipolar 0.008 50 enable Train: 0.7293
Test: 0.51543

55

Type E: Run concatenate, 22 channels.

Simulations with given weights and instead of using data augmentation we used

concatenation technique as described below. As we can see, the test result were

improved. But still the results on the training set are much better than the results on

the testing set.

How the samples were created?

The original data contain 2592 samples which each sample is size 6908. Each

sample underwent the following transformation:

When we concatenate all the transformation resul ts we get a sample with size of:

12954 = 6908 + 3454 + 1727 + 865

The neural network first layer, input layer, will contain 12954 neurons .

Train
size

Test
size

Augment
methods

Given
weights

Hidden
Layers

Bipolar /
 Unipolar

Learning
 Rate

Epochs Resilient Results
MSE

1 2592 x
12954

2592 x
12954

none Given:
102 x 127

100 Bipolar 0.008 100 enable Train: 0.80556
Test: 0.53241

2 2592 x
12954

2592 x
12954

none Given:
102 x 127

100 Bipolar 0.009 80 enable Train: 0.83796
Test: 0.54321

original input 6908

smooth(‘moving’)

line2 resized 3454

smooth(0.005,

‘lowess)

line2

line3

line3 resized 1727

smooth(0.005,

‘loess’)

line4

line4 resized 865

smooth(0.005

,'rlowess')

56

a. Result summery

Type Train
size

Test
size

Augment
methods

Given
weights

Hidden
Layers

Bipolar /
Unipolar

Learning
Rate

Epochs Resilient Results
MSE

A 2592 2592 none none 50 Bipolar 0.03 80 enable Train: 0.80015
Test: 0.37963

B 2592 2592 none EEG:
24 x 288

Given:
72 x 96

100 Bipolar 0.008 100 enable Train: 0.84375
Test: 0.48958

C 5184 2592 elastic
deformati
on

none 50 Bipolar 0.03 80 enable Train: 0.92091
Test: 0.39468

D 7776 2592 smoothing
-
smooth(x
,'moving
')

&

smoothing
-
smooth(x
,0.005,'
lowess')

EEG:
22 x 315

Given:
77 x 90

100 Bipolar 0.008 enable Train: 0.7293

Test: 0.51543

E 2592 x
12954

2592 x
12954

none Given:
102 x
127

100 Bipolar 0.009 80 enable Train: 0.83796
Test: 0.54321

57

b. Group of channels

Run by channel best 14 channels

Each channels separately.

Channel Train MSE Test MSE

1 0.42593 0.3125

2 0.43364 0.29784

3 0.45602 0.30324

4 0.43711 0.31019

5 0.4456 0.31713

6 0.42323 0.2963

7 0.40046 0.28202

8 0.43056 0.28395

9 0.4213 0.34144

10 0.45216 0.33526

11 0.4213 0.31983

12 0.42323 0.29282

13 0.42284 0.27662

14 0.4159 0.31327

15 0.44252 0.32215

16 0.45293 0.33565

17 0.43133 0.32369

18 0.4429 0.30787

19 0.45988 0.32793

20 0.46103 0.33025

21 0.4429 0.33565

22 0.49614 0.34954

Channel Train MSE Test MSE

1 0.42593 0.3125

4 0.43711 0.31019

5 0.4456 0.31713

9 0.4213 0.34144

10 0.45216 0.33526

11 0.4213 0.31983

14 0.4159 0.31327

15 0.44252 0.32215

16 0.45293 0.33565

17 0.43133 0.32369

19 0.45988 0.32793

20 0.46103 0.33025

21 0.4429 0.33565

22 0.49614 0.34954

Channel Train MSE Test MSE

9 0.4213 0.34144

10 0.45216 0.33526

16 0.45293 0.33565

19 0.45988 0.32793

20 0.46103 0.33025

21 0.4429 0.33565

22 0.49614 0.34954

Best 7 channels

58

c. Run with channel reduction

14 group channel

314(duration) x 14(number of channels) = 4396

Train
size

Test
size

Augment
methods

Given
 weights

Hidden
 Layers

Bipolar /
Unipolar

Learning
Rate

Epochs Resilient Results
MSE

1 2592 2592 none none 30 Bipolar 0.03 80 Enable Train: 0.74807
Test: 0.37423

2 2592 2592 none EEG:
16 x 275

Given:
55 x 88

100 Bipolar 0.008 100 Enable Train: 0.76929
Test: 0.47454

7 group channel

314(duration) x 7(number of channels) = 2198

Train
size

Test
size

Augment
 methods

Given
weights

Hidden
Layers

Bipolar /
Unipolar

Learning
Rate

Epochs Resilient Results
MSE

1 2592 2592 none none 30 Bipolar 0.03 80 Enable Train: 0.65162
Test: 0.36767

2 2592 2592 none EEG:
11 x 200

Given:
40 x 55

100 Bipolar 0.008 100 Enable Train: 0.63773
Test: 0.45023

59

VII. Work Contribution

1. Improve results

The data sets were taken from BCI Competition IV [18]. The result of the competition

can be found on the reference.

Their performance measure is kappa value. Our result presented in MSE.
One of the goals of this work is to get better results and to find different techniques

to do so. Our result can be found in the result summery section VIII.

Processing of EEG signals are been very popular in these days, it used in a wide variety of

applications such as BCI applications, motor imagery classification, mental tasks, drug effects,

sleep disorders. Improve accuracy results improves the applications effects.

2. Reduce channels

As discussed earlier in this paper , we can see that we can achieve similar

classification accuracy when we have less EEG channels. In our case, using different

experiments we have found the important channels, which are more discriminant than

others are. This may affect the recording process in order to focus on these channels

and eliminate others. Large number of EEG channels acquired can affect algorithm

performance, efficient channel selection is needed. The needs of reducing the

computational complexity of any processing task performed on EEG signals by

selecting the relevant channels and extract the features is highly important. Reducing

the amount of overfitting that may arise by the irrelevant channel s is highly important

as well.

60

VIII. Summery

Randomly selecting one group of four, to predict which imaginary move occur will

stamp probability of 0.25. The first experiments with Artificial Neural Network

trained by backpropagation yield accuracy of 0.29707MSE on the test dataset which is

not much better than guessing. As long as we tried to tune the algorithm, the best

result we got is 0.37963MSE and 0.80015MSE, train and test datasets respectively.

These results were the best we could achieve using the proposed technique. To

improve the results we tried to find new techniques. A known technique is to initial

the system with values which were taken from other pre trained systems such as the

ANN trained on the MNIST data set. By this, we get the benefit of a very large

training set. The Neural Network architecture of the two problems need to have the

same number of input neurons, hence the dataset should be prepared in advanced.

When run the algorithm with the given set of values we got 0.39082MSE(test) and

0.43056MSE(train). After tuning the algorithm as described in the simulations section

(from VI.4) we got 0.48958MSE(test) and 0.84375MSE(train). Says that, as long as the

training dataset is bigger and the algorithm learn more data the results can i mprove

dramatically. Our EEG dataset is considered as a small one, therefore several

techniques that were applied to augment the dataset: elastic deformation; White

Gaussian noise; Pitch shift and several Smoothing techniques (We tried more

augmentation techniques that are not mentioned). Each of which can get different

results. With the run of the augmentation technique with the given values we got

0.51543MSE(test) and 0.7293MSE(t rain). As we can see clearly, those techniques improve

the results. Instead of augment the dataset “vertically” we can augment it

“horizontally” – take the originally dataset and add to each wave a tail, concatenate

the waves which created with the original one, this technique yields results of

0.54321MSE(test) and 0.83796MSE(train).

We can see in the simulations section that when trying to reduce the number of

channel, in order to test if we can use tools that have less channels, the result not

changed much, and there is still advantage to more channels. For 22 channels with

given weights only, the best we got is 0.48958MSE(test) and 0.84375MSE(train); for 14

channels with given weights only, the best we got is 0.47454 MSE(test) and

0.76929MSE(train); for 7 channels with given weights only, the best we got is

0.45023MSE(test) and 0.63773MSE(train);

Research in the field of EEG brain waves with the respect of machine learning can

achieve and be useful for broad aspects in the medicine world. Get better

understanding of diseases and predictions, help disabled with brain computer

interface. Making a science contribution for EEG research.

61

IX. Appendix - A

A1 – Transform an elastic deformation on a dataset, MATLAB.

load('TrainArr.mat');

load('TrainLables.mat');

TrainArray_ed = [];

for i=1:size(Arr,1) %for each sample

 img = reshape(Arr(i,:), [22 314]); % get one EEG with 22 channels

 dx = -1+2*rand(size(img));

 dy = -1+2*rand(size(img));

 sig=4;

 alpha=60;

 H=fspecial('gauss',[7 7], sig);

 fdx=imfilter(dx,H);

 fdy=imfilter(dy,H);

 n=sum((fdx(:).^2+fdy(:).^2));

 fdx=alpha*fdx./n;

 fdy=alpha*fdy./n;

 [y x]=ndgrid(1:size(img,1),1:size(img,2));

 ed = griddata(x-fdx,y-fdy,double(img),x,y);

 ed(isnan(ed))=0;

 ed = reshape(ed, [1 6908]);

 TrainArray_ed = [TrainArray_ed; ed];

 display([i]);

end

62

A2 - Save data and metadata to Excel file

A3 - Create excel files with Java code

%need to run biosig_installer first. see document
biosig_installer

fileName = ['A01T.gdf'];

[s_t, h_t] = sload(fileName, 0, 'OVERFLOWDETECTION:OFF');

dlmwrite(['C:\Desktop\excel\s_t_1.csv'], s_t, 'delimiter', ',', 'precision', 15);

h_pos = h_t.EVENT.POS;

h_typ = h_t.EVENT.TYP;

h_dur = h_t.EVENT.DUR;

dlmwrite(['C:\Desktop\excel\h_pos_t_1.csv'], h_pos, 'delimiter', ',', 'precision', 15);

dlmwrite(['C:\Desktop\excel\h_typ_t_1.csv'], h_typ, 'delimiter', ',', 'precision', 15);

dlmwrite(['C:\Desktop\excel\h_dur_t_1.csv'], h_dur, 'delimiter', ',', 'precision', 15);

package eeg.data.excel;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.ArrayList;

import java.util.List;

import au.com.bytecode.opencsv.CSVReader;

import au.com.bytecode.opencsv.CSVWriter;

/**

 * @author LioR SoLoMoN

 *

 */

public class Excel {

 static final String type = "t"; //e

 static final int NUM_OF_FILES = 9;

 static final int NUM_OF_DURATION = 313;

 static final int NUM_OF_TRIALS = 288;

 public static void main(String[] args) {

 System.out.println("START Program");

 for (int i = 1; i <= NUM_OF_FILES; i++) {

 createFile(String.valueOf(i));

 }

 System.out.println("END Program");

 }

63

public static void createFile(String fileNumber) {

 System.out.println("START file: " + fileNumber);

 String userName = System.getProperty("user.name");

 String csvFileRead = "C:\\Users\\" + userName + "\\Desktop\\files\\s_" +

 type +"_" + fileNumber + ".csv";

 String csvFileReadIndex = "C:\\Users\\" + userName +

 "\\Desktop\\files\\indexes_" + fileNumber + ".csv";

 String csvFileWrite = "C:\\Users\\" + userName + "\\Desktop\\files\\" +

 type + "\\file_" + fileNumber + ".csv";

 CSVReader reader = null;

 CSVReader readerIndexes = null;

 CSVWriter writer= null;

 try {

 reader = new CSVReader(new FileReader(csvFileRead));

 readerIndexes = new CSVReader(new FileReader(csvFileReadIndex));

 int[] indexes = new int[NUM_OF_TRIALS];

 String[] line;

 int k = 0;

 while((line = readerIndexes.readNext()) != null) {

 indexes[k] = Integer.valueOf(line[0]);

 k++;

 }

 System.out.println("1");

 List<String[]> readAll = reader.readAll();

 List<String[]> newData = new ArrayList<String[]>();

for (int i = 0; i < NUM_OF_TRIALS; i++) {

 System.out.println("i: " + i);

 try {

 for(int ind = indexes[i]; ind <= (NUM_OF_DURATION +

 indexes[i]); ind++) {

 System.out.println("ind: " + ind);

 newData.add(readAll.get(ind-1));

 }

 } catch (Exception e) {

 System.out.println("2");

 e.printStackTrace();

 System.exit(0);

 }

 }

 writer = new CSVWriter(new FileWriter(csvFileWrite));

 for(String[] row : newData) {

 writer.writeNext(row);

 }

 writer.close();

 } catch (Exception e) {

 System.out.println("3");

 e.printStackTrace();

 System.exit(0);

 }

 System.out.println("END file: " + fileNumber);

 }

}

64

A4 - Save the 9 csv files in *.mat format

A5 - Adjust the dataset

A6 - Remove EOG data

A7 - Create array with the right structure

for i=1:9

 fileName = ['file_' num2str(i) '.csv'];

 TrainArr = csvread(fileName)

 save(['TrainArr\TrainArr_' num2str(i) '.mat'], 'TrainArr');

end

Arr = [];

for i=1:9

 fileName = ['TrainArr_' num2str(i) '.mat'];

 load(fileName);

 Arr = [Arr; TrainArr]

end

save('TrainArrWithEOG.mat','Arr');

load('TrainArrWithEOG.mat');

TrainArr = Arr(:,1:end-3);

save('TrainArr.mat','TrainArr');

Arr = [];

load('TrainArr.mat');

for i=1:2592

 from_line = 1 + 314*(i-1);

 to_line = 314 * i;

 line = reshape(TrainArr(from_line:to_line,:),[1,6908]);

 Arr = [Arr; line];

end

save('TrainArr_final.mat','Arr');

65

A8 – Save Train Labels

%install the plugin on start

biosig_installer

%Train labels

for i=1:9

 fileName = ['A0' num2str(i) 'T.gdf'];

 [s_t, h_t] = sload(fileName);

 TrainLables = h_t.Classlabel;

 saveFileName = ['TrainLables\TrainLables_0' num2str(i) 'T.mat'];

 save(saveFileName,'TrainLables');

 fprintf(['done file ' num2str(i)]);

end

66

X. Bibliography

[1] Emotiv - Brain Computer Interface: http://www.emotiv.com

[2] Openbci - Brain Computer Interface http://www.openbci.com/

[3] NeuroSky - Brainwave Sensors: http://www.neurosky.com

[4] E. Alpaydin, 2010, Introduction to Machine Learning. Second Edition. MIT Press, pp. 233-278

[5] An, X., Guo, X., He, L., Kuang, D., & Zhao, Y. (2014). A Deep Learning Method for

Classification of EEG Data Based on Motor Imagery. ICIC.

[6] D. Kriesel. A Brief Introduction to Neural Networks, pp. 3-127. 2005

[7] K.R Muller, M. Tangermann, G. Dornhege, M. Krauledat. G. Curio, B. Blankertz. Machine

Learning for Real-Time Single-Trial EEG Analysis: From Brain-Computer Interfacing to Mental

State Monitoring.

[8] S.Barua, S.Begum, A Review on machine Learning Algorithms in Handling EEG Artifacts. May

2014.

[9] Podgorelec, V. (2012). Analyzing EEG Signals with Machine Learning for Diagnosing

Alzheimer’s Disease. Elektronika Ir Elektrotechnika, 18(8), 61-64.

[10] Subasi, A.; Kiymik, M.K.; Alkan, A.; Koklukaya, E. Neural Network Classification of EEG

Signals by Using AR with MLE Preprocessing for Epileptic Seizure Detection. Math. Comput.

Appl. 2005, 10, 57-70.

[11] Deep Learning Summer School, http://videolectures.net/deeplearning2015_montreal/

[12] Michael A.Nielsen, “Neural Networks and Deep Learning”, Determination Press, 2015.

[13] S. Baillet, J. C. Mosher and R. M. Leahy, "Electromagnetic brain mapping," in IEEE Signal

Processing Magazine, vol. 18, no. 6, pp. 14-30, Nov 2001.

[14] Brain-computer interfaces for communication and control Wolpaw J.R., Birbaumer N.,

McFarland D.J., Pfurtscheller G., Vaughan T.M. (2002) Clinical Neurophysiology, 113 (6)

, pp. 767-791.

http://www.emotiv.com/
http://www.openbci.com/
http://www.neurosky.com/
http://videolectures.net/deeplearning2015_montreal/

67

[15] Gomez-Gil, J.; San-Jose-Gonzalez, I.; Nicolas-Alonso, L.F.; Alonso-Garcia, S. Steering a

Tractor by Means of an EMG-Based Human-Machine Interface. Sensors 2011, 11, 7110-

7126.

[16] Michael Bensch, Ahmed A. Karim, Jürgen Mellinger, et al., “Nessi: An EEG-Controlled Web

Browser for Severely Paralyzed Patients,” Computational Intelligence and Neuroscience, vol.

2007, Article ID 71863, 5 pages, 2007. doi:10.1155/2007/71863.

[17] Ulrich Hoffmann, Jean-Marc Vesin, Karin Diserens, and Touradj Ebrahimi. An efficient P300-

based brain-compuer interface for disabled subjects. Journal of Neuroscience Methods,

2007. submitted.

[18] EEG dataset - C. Brunner1 , R. Leeb1 , G. R. M¨uller-Putz1 , A. Schl¨ogl2 , and G.

Pfurtscheller. BCI Competition 2008 – Graz data set A.

 http://www.bbci.de/competition/iv/desc_2a.pdf

[19] EEG dataset - http://www.bbci.de/competition/iv/#dataset2a

[20] Neurons - http://www.human-memory.net/brain_neurons.html

[21] Fabien Lotte. A Tutorial on EEG Signal Processing Techniques for Mental State Recognition

in Brain-Computer Interfaces. Eduardo Reck Miranda; Julien Castet. Guide to Brain-

Computer Music Interfacing, Springer, 2014.

[22] Boundless. “Neurons.” Boundless Biology. Boundless, 26 May. 2016. Retrieved 25 Dec. 2016

from https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-nervous-system-

35/neurons-and-glial-cells-199/neurons-759-11992/

[23] P. Y. Simard, D. Steinkraus and J. C. Platt, "Best practices for convolutional neural networks

applied to visual document analysis," Seventh International Conference on Document

Analysis and Recognition, 2003. Proceedings., 2003, pp. 958-963.

[24] Grill, T., & Schlüter, J. (2015). Exploring Data Augmentation for Improved Singing Voice

Detection with Neural Networks. ISMIR.

[25] Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann

Machines, pp. 807-814. 2010.

[26] EEG dataset - An efficient P300-based brain-computer interface for disabled subjects

http://mmspg.epfl.ch/BCI_datasets

http://www.bbci.de/competition/iv/desc_2a.pdf
http://www.bbci.de/competition/iv/#dataset2a
http://www.human-memory.net/brain_neurons.html
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-nervous-system-35/neurons-and-glial-cells-199/neurons-759-11992/
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-nervous-system-35/neurons-and-glial-cells-199/neurons-759-11992/
http://mmspg.epfl.ch/BCI_datasets

68

[27] Hertz, J.A., & Krogh, A. (1991). A Simple Weight Decay Can Improve Generalization. NIPS.

[28] The MNIST Database: http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

